Learn R Programming

hcci (version 1.0.0)

Pboot: Percentile Bootstrap Confidence Interval (Wild Bootstrap) - Linear Models Heteroskedasticity

Description

This function calculates confidence intervals for the parameters in heteroskedasticity linear regression models. The intervals are estimated by bootstrap percentile.

Usage

Pboot(model, significance=0.05, double=FALSE, J=NULL, K=NULL, distribution="rademacher")

Arguments

model
Any object of class lm;
significance
Significance level of the test. By default, the level of significance is 0.05;
double
If double = TRUE will be calculated intervals bootstrap t and double bootstrap t. The default is double = FALSE;
J
Number of replicas of the first bootstrap;
K
Number of replicas of the second bootstrap;
distribution
Distribution of the random variable with mean zero and variance one. This random variable multiplies the error estimates in the generation of the samples. The argument distribution can be rademacher or normal (standard normal). The default is distribution = rademacher.

References

Booth, J.G. and Hall, P. (1994). Monte Carlo approximation and the iterated bootstrap. Biometrika, 81, 331-340.

Cribari-Neto, F.; Lima, M.G. (2009). Heteroskedasticity-consistent interval estimators. Journal of Statistical Computation and Simulation, 79, 787-803;

Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis, 14, 1261-1295;

McCullough, B.D; Vinod, H.D. (1998). Implementing the double bootstrap, 12, 79-95.

See Also

Tboot.

Examples

Run this code
data(schools)
datas = schools[-50,]
y = datas$Expenditure 
x = datas$Income/10000
model = lm(y ~ x)
Pboot(model=model, significance = 0.05, double = FALSE,
      J=1000, K = 100, distribution = "rademacher")

Run the code above in your browser using DataLab