# \donttest{
if(requireNamespace("parallel")){
library(parallel)
ncores = 2
if(requireNamespace("survival")){
library(survival)
data(E1684)
data(E1690)
## take subset for speed purposes
E1684 = E1684[1:100, ]
E1690 = E1690[1:50, ]
## replace 0 failure times with 0.50 days
E1684$failtime[E1684$failtime == 0] = 0.50/365.25
E1690$failtime[E1690$failtime == 0] = 0.50/365.25
E1684$cage = as.numeric(scale(E1684$age))
E1690$cage = as.numeric(scale(E1690$age))
data_list = list(currdata = E1690, histdata = E1684)
formula = survival::Surv(failtime, failcens) ~ treatment + sex + cage + node_bin
}
a0 = seq(0, 1, length.out = 11)
if (instantiate::stan_cmdstan_exists()) {
## call created function
## wrapper to obtain log normalizing constant in parallel package
logncfun = function(a0, ...){
hdbayes::aft.npp.lognc(
formula = formula, histdata = data_list[[2]], a0 = a0, dist = "weibull",
...
)
}
cl = makeCluster(ncores)
clusterSetRNGStream(cl, 123)
clusterExport(cl, varlist = c('formula', 'data_list'))
a0.lognc = parLapply(
cl = cl, X = a0, fun = logncfun, iter_warmup = 500,
iter_sampling = 1000, chains = 1, refresh = 0
)
stopCluster(cl)
a0.lognc = data.frame( do.call(rbind, a0.lognc) )
## sample from normalized power prior
aft.npp(
formula = formula,
data.list = data_list,
a0.lognc = a0.lognc$a0,
lognc = a0.lognc$lognc,
dist = "weibull",
chains = 1, iter_warmup = 500, iter_sampling = 1000,
refresh = 0
)
}
}
# }
Run the code above in your browser using DataLab