Learn R Programming

hdbm is a Bayesian inference method that uses continuous shrinkage priors for high-dimensional mediation analysis, developed by Song et al (2018). hdbm provides estimates for the regression coefficients as well as the posterior inclusion probability for ranking mediators.

Install

You can install hdbm via CRAN

install.packages("hdbm")

Or devtools

devtools::install_github("umich-cphds/hdbm", build_opts = c())

If you wish to install the package via devtools, you will need a C++ compiler installed. This can be accomplished by installing Rtools on Windows and Xcode on MacOS.

Example

Taken from the hdbm help file

library(hdbm)

Y <- hdbm.data$y
A <- hdbm.data$a

# grab the mediators from the example data.frame
M <- as.matrix(hdbm.data[, paste0("m", 1:100)], nrow(hdbm.data))

# We just include the intercept term in this example.
C <- matrix(1, nrow(M), 1)
beta.m <- rep(0, 100)
alpha.a <- rep(0, 100)

set.seed(1245)
output <- hdbm(Y, A, M, C, C, beta.m, alpha.a, burnin = 3000, ndraws = 100)

# Which mediators are active?
active <- which(colSums(output$r1 * output$r3) > 50)
colnames(M)[active]

Reference

Yanyi Song, Xiang Zhou et al. Bayesian Shrinkage Estimation of High Dimensional Causal Mediation Effects in Omics Studies. bioRxiv 467399

Copy Link

Version

Install

install.packages('hdbm')

Monthly Downloads

25

Version

0.9.0

License

GPL-3

Maintainer

Alexander Rix

Last Published

August 28th, 2019

Functions in hdbm (0.9.0)

hdbm

High Dimensional Bayesian Mediation
hdbm.data

Synthetic example data for hdbm