Tune the tolerance parameter of generalized Dantzig selector and hard thresholding level via prediction error in test data.
CV_VARMLE(tol_seq, ht_seq, S0_train, S1_train, Y_test, is_echo = FALSE)a list of CV-optimal parameters and test prediction error.
tol_min | CV-optimal tolerance parameter in Dantzig selector. |
ht_min | CV-optimal hard thresholding level for the output of Dantzig selector. |
test_loss | a matrix of prediction error in test data; columns match tol_seq, and rows match ht_seq. |
vector; grid of tolerance parameter in Dantzig selector for cross-validation.
vector; grid of hard-thresholding levels for transition matrix estimate.
To avoid hard thresholding, set ht_seq=0.
a p by p matrix; average (over time points in training data) of conditional expectation of \(x_t x_t^\top\) on \(y_1, \ldots, y_T\) and parameter estimates, obtained from expectation step.
a p by p matrix; average (over time points in training data) of conditional expectation of \(x_t x_{t+1}^\top\)on \(y_1, \ldots, y_T\) and parameter estimates, obtained from expectation step.
a p by T_test matrix; observations of time series in test set.
logical; if true, display the information of CV-optimal (tol, ht).
Xiang Lyu, Jian Kang, Lexin Li