# NOT RUN {
library(caret)
df <- data.frame(a = c(1,2,3,1),
b = c('m','f','m','m'),
c = c(0.7,1.4,2.4,2.0),
d = c(100,250,200,150))
y <- c('y','n','y','n')
dfAlt <- calculateSDChanges(df = df,
rowNum = 2,
sizeOfSDPerturb = 0.5,
numColLeaveOut = 'd')
glmOb <- train(x = df,y = y,method = 'glm',family = 'binomial')
originalPred <- predict(object = glmOb,
newdata = df[4,],
type = 'prob')
alternatePred <- calulcateAlternatePredictions(df = dfAlt,
modelObj = glmOb,
type = 'lasso',
removeCols = 'AlteredCol')
dfResult <- findBestAlternateScenarios(dfAlternateFeat = dfAlt,
originalRow = df[4,],
predictionVector = as.numeric(alternatePred),
predictionOriginal = originalPred[[2]])
dfResult
# }
Run the code above in your browser using DataLab