This is a boilerplate function to create automatically the following:
recipe
model specification
workflow
tuned model (grid ect)
hai_auto_ranger(
.data,
.rec_obj,
.splits_obj = NULL,
.rsamp_obj = NULL,
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.best_metric = "f_meas",
.model_type = "classification"
)
A list
The data being passed to the function. The time-series object.
This is the recipe object you want to use. You can use
hai_ranger_data_prepper()
an automatic recipe_object.
NULL is the default, when NULL then one will be created.
NULL is the default, when NULL then one will be created. It
will default to creating an rsample::mc_cv()
object.
Default is TRUE, this will create a tuning grid and tuned workflow
Default is 10
Default is 1
Default is "f_meas". You can choose a metric depending on the
model_type used. If regression
then see hai_default_regression_metric_set()
,
if classification
then see hai_default_classification_metric_set()
.
Default is classification
, can also be regression
.
Steven P. Sanderson II, MPH
This uses the parsnip::rand_forest()
with the engine
set to kernlab
https://parsnip.tidymodels.org/reference/rand_forest.html
Other Boiler_Plate:
hai_auto_c50()
,
hai_auto_cubist()
,
hai_auto_earth()
,
hai_auto_glmnet()
,
hai_auto_knn()
,
hai_auto_svm_poly()
,
hai_auto_svm_rbf()
,
hai_auto_wflw_metrics()
,
hai_auto_xgboost()
Other Ranger:
hai_ranger_data_prepper()
if (FALSE) {
data <- iris
rec_obj <- hai_ranger_data_prepper(data, Species ~ .)
auto_ranger <- hai_auto_ranger(
.data = data,
.rec_obj = rec_obj,
.best_metric = "f_meas"
)
auto_ranger$recipe_info
}
Run the code above in your browser using DataLab