Last chance! 50% off unlimited learning
Sale ends in
This is a boilerplate function to create automatically the following:
recipe
model specification
workflow
tuned model (grid ect)
calibration tibble and plot
ts_auto_arima_xgboost(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_arima_boost",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE
)
A list
The data being passed to the function. The time-series object.
The column that holds the datetime.
The column that has the value
The formula that is passed to the recipe like value ~ .
The rsample splits object
Default is ts_arima_boost
Defaults to TRUE, this creates a tuning grid and tuned model.
If .tune
is TRUE then the .grid_size
is the size of the
tuning grid.
How many cores do you want to use. Default is 1
How many observations for assess. See timetk::time_series_cv()
How many observations to skip. See timetk::time_series_cv()
How many slices to return. See timetk::time_series_cv()
Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()
Not yet implemented.
Steven P. Sanderson II, MPH
This uses the modeltime::arima_boost()
with the engine
set to xgboost
https://business-science.github.io/modeltime/reference/arima_boost.html
Other Boiler_Plate:
ts_auto_arima()
,
ts_auto_croston()
,
ts_auto_exp_smoothing()
,
ts_auto_glmnet()
,
ts_auto_lm()
,
ts_auto_mars()
,
ts_auto_nnetar()
,
ts_auto_prophet_boost()
,
ts_auto_prophet_reg()
,
ts_auto_smooth_es()
,
ts_auto_svm_poly()
,
ts_auto_svm_rbf()
,
ts_auto_theta()
,
ts_auto_xgboost()
# \donttest{
library(dplyr)
library(timetk)
library(modeltime)
data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)
ts_auto_arima_xgboost <- ts_auto_arima_xgboost(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.cv_slice_limit = 2,
.tune = FALSE
)
ts_auto_arima_xgboost$recipe_info
# }
Run the code above in your browser using DataLab