Learn R Programming

healthyR.ts (version 0.3.1)

ts_model_rank_tbl: Model Rank

Description

This takes in a calibration tibble and computes the ranks of the models inside of it.

Usage

ts_model_rank_tbl(.calibration_tbl)

Value

A tibble with models ranked by metric performance order

Arguments

.calibration_tbl

A calibrated modeltime table.

Author

Steven P. Sanderson II, MPH

Details

This takes in a calibration tibble and computes the ranks of the models inside of it. It computes for now only the default yardstick metrics from modeltime These are the following using the dplyr min_rank() function with desc use on rsq:

  • "rmse"

  • "mae"

  • "mape"

  • "smape"

  • "rsq"

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()

Examples

Run this code
# NOT RUN
if (FALSE) {
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
  data_tbl,
  date_var = date_col,
  assess = "12 months",
  cumulative = TRUE
)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_fit_arima <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_arima) %>%
  fit(training(splits))

wflw_fit_mars <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_mars) %>%
  fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

ts_model_rank_tbl(calibration_tbl)

}

Run the code above in your browser using DataLab