Learn R Programming

healthyR.ts

The Time Series Modeling Companion to healthyR

To view the full wiki, click here: Full healthyR.ts Wiki

healthyR.ts is a comprehensive R package designed specifically for time series analysis and forecasting of hospital administrative and clinical data. Built on the powerful tidymodels ecosystem, it provides a consistent, user-friendly framework that simplifies complex time series workflows.

Why healthyR.ts?

Hospital data analysis often requires handling time series for metrics like: - Average Length of Stay (ALOS) - Readmission rates - Patient volumes and admissions - Bed occupancy rates - Clinical outcomes over time

healthyR.ts takes the guesswork out of time series analysis by providing:

Automated Workflows - One-function solutions for complete modeling pipelines
Visual Analytics - Rich plotting functions for data exploration
Data Generators - Simulate realistic time series for testing and validation
Statistical Tools - Comprehensive suite of time series statistics
Clustering - Feature-based time series clustering capabilities
Forecasting - 15 automated model workflows (ARIMA, Prophet, XGBoost, and more)

Key Features

Copy Link

Version

Install

install.packages('healthyR.ts')

Monthly Downloads

361

Version

0.3.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Steven Sanderson

Last Published

January 23rd, 2026

Functions in healthyR.ts (0.3.2)

internal_ts_forward_event_tbl

Event Analysis
ts_auto_arima_xgboost

Boilerplate Workflow
ts_auto_lm

Boilerplate Workflow
ts_auto_mars

Boilerplate Workflow
ts_arima_simulator

Simulate ARIMA Model
ts_auto_arima

Boilerplate Workflow
ts_acceleration_vec

Vector Function Time Series Acceleration
ts_adf_test

Augmented Dickey-Fuller Test for Time Series Stationarity
ts_auto_nnetar

Boilerplate Workflow
ts_auto_prophet_boost

Boilerplate Workflow
ts_auto_croston

Boilerplate Workflow
ts_auto_svm_poly

Boilerplate Workflow
ts_auto_smooth_es

Boilerplate Workflow
ts_calendar_heatmap_plot

Time Series Calendar Heatmap
ts_event_analysis_plot

Time Series Event Analysis Plot
ts_auto_xgboost

Boilerplate Workflow
ts_brownian_motion

Brownian Motion
ts_auto_svm_rbf

Boilerplate Workflow
ts_brownian_motion_augment

Brownian Motion
ts_extract_auto_fitted_workflow

Extract Boilerplate Items
ts_auto_exp_smoothing

Boilerplate Workflow
ts_auto_glmnet

Boilerplate Workflow
ts_forecast_simulator

Time-series Forecasting Simulator
ts_geometric_brownian_motion

Geometric Brownian Motion
ts_brownian_motion_plot

Auto-Plot a Geometric/Brownian Motion Augment
ts_auto_theta

Boilerplate Workflow
ts_auto_recipe

Build a Time Series Recipe
ts_auto_prophet_reg

Boilerplate Workflow
ts_compare_data

Compare data over time periods
ts_model_compare

Compare Two Time Series Models
ts_get_date_columns

Get date or datetime variables (column names)
ts_geometric_brownian_motion_augment

Geometric Brownian Motion
ts_model_auto_tune

Time Series Model Tuner
ts_feature_cluster_plot

Time Series Feature Clustering
ts_lag_correlation

Time Series Lag Correlation Analysis
ts_feature_cluster

Time Series Feature Clustering
ts_ma_plot

Time Series Moving Average Plot
ts_random_walk_plot

Auto-Plot a Random Walk
ts_scale_color_colorblind

Provide Colorblind Compliant Colors
ts_growth_rate_augment

Augment Data with Time Series Growth Rates
ts_growth_rate_vec

Vector Function Time Series Growth Rate
ts_random_walk

Random Walk Function
ts_random_walk_ggplot_layers

Get Random Walk ggplot2 layers
ts_vva_plot

Time Series Value, Velocity and Acceleration Plot
ts_wfs_arima_boost

Auto Arima XGBoost Workflowset Function
ts_model_rank_tbl

Model Rank
ts_model_spec_tune_template

Time Series Model Spec Template
ts_time_event_analysis_tbl

Event Analysis
ts_to_tbl

Coerce a time-series object to a tibble
ts_scale_fill_colorblind

Provide Colorblind Compliant Colors
ts_scedacity_scatter_plot

Time Series Model Scedacity Plot
ts_info_tbl

Get Time Series Information
ts_is_date_class

Check if an object is a date class
ts_velocity_augment

Augment Function Velocity
ts_qc_run_chart

Quality Control Run Chart
ts_velocity_vec

Vector Function Time Series Acceleration
ts_qq_plot

Time Series Model QQ Plot
ts_wfs_nnetar_reg

Auto NNETAR Workflowset Function
ts_wfs_ets_reg

Auto ETS Workflowset Function
ts_wfs_auto_arima

Auto Arima (Forecast auto_arima) Workflowset Function
ts_wfs_prophet_reg

Auto PROPHET Regression Workflowset Function
util_doublediff_ts

Double Differencing to Make Time Series Stationary
util_doubledifflog_ts

Double Differencing with Log Transformation to Make Time Series Stationary
ts_wfs_svm_poly

Auto SVM Poly (Kernlab) Workflowset Function
util_log_ts

Logarithmic Transformation to Make Time Series Stationary
util_singlediff_ts

Single Differencing to Make Time Series Stationary
ts_wfs_xgboost

Auto XGBoost (XGBoost) Workflowset Function
ts_wfs_svm_rbf

Auto SVM RBF (Kernlab) Workflowset Function
ts_wfs_mars

Auto MARS (Earth) Workflowset Function
ts_splits_plot

Time Series Splits Plot
ts_wfs_lin_reg

Auto Linear Regression Workflowset Function
ts_sma_plot

Simple Moving Average Plot
util_difflog_ts

Differencing with Log Transformation to Make Time Series Stationary
get_recipe_call

Misc for boilerplate
auto_stationarize

Automatically Stationarize Time Series Data
color_blind

Provide Colorblind Compliant Colors
internal_ts_backward_event_tbl

Event Analysis
ci_hi

Confidence Interval Generic
ci_lo

Confidence Interval Generic
calibrate_and_plot

Helper function - Calibrate and Plot
step_ts_velocity

Recipes Time Series velocity Generator
ts_acceleration_augment

Augment Function Acceleration
step_ts_acceleration

Recipes Time Series Acceleration Generator
model_extraction_helper

Model Method Extraction Helper
tidy_fft

Tidy Style FFT
internal_ts_both_event_tbl

Event Analysis
%>%

Pipe operator
assign_value

Misc for boilerplate
chr_assign

Misc for boilerplate
required_pkgs.step_ts_acceleration

Requited Packages
arima_string

Forecast arima.string
tidyeval

Tidy eval helpers