Learn R Programming

heemod (version 0.4.0)

run_probabilistic: Run Probabilistic Uncertainty Analysis

Description

Run Probabilistic Uncertainty Analysis

Usage

run_probabilistic(model, resample, N)

Arguments

model
The result of run_models.
resample
Resampling distribution for parameters defined by define_distrib.
N
> 0. Number of simulation to run.

Value

A list with one data.frame per model.

Examples

Run this code
# example for run_probabilistic

mod1 <-
  define_model(
    transition_matrix = define_matrix(
      .5, .5,
      .1, .9
    ),
    define_state(
      cost = cost_init + age * 5,
      ly = 1
    ),
    define_state(
      cost = cost_init + age,
      ly = 0
    )
  )

mod2 <-
  define_model(
    transition_matrix = define_matrix(
      p_trans, C,
      .1, .9
    ),
    define_state(
      cost = 789 * age / 10,
      ly = 1
    ),
    define_state(
      cost = 456 * age / 10,
      ly = 0
    )
    
  )

res2 <- run_models(
  mod1, mod2,
  parameters = define_parameters(
    age_init = 60,
    cost_init = 1000,
    age = age_init + markov_cycle,
    p_trans = .7
  ),
  init = 1:0,
  cycles = 10,
  cost = cost,
  effect = ly
)

rsp <- define_distrib(
  age_init ~ normal(60, 10),
  cost_init ~ normal(1000, 100),
  p_trans ~ prop(.7, 100),
  correlation = matrix(c(
    1, .4, 0,
    .4, 1, 0,
    0, 0, 1
  ), byrow = TRUE, ncol = 3)
)


# with run_model result
# (only 10 resample for speed)
ndt1 <- run_probabilistic(res2, resample = rsp, N = 10)

Run the code above in your browser using DataLab