Learn R Programming

heemod (version 0.9.1)

distributions: Probability Density Functions for Probabilistic

Description

Define a distribution for PSA parameters.

Usage

normal(mean, sd)

lognormal(mean, sd, meanlog, sdlog)

gamma(mean, sd)

binomial(prob, size)

multinomial(...)

logitnormal(mu, sigma)

beta(shape1, shape2)

triangle(lower, upper, peak = (lower + upper)/2)

poisson(mean)

define_distribution(x)

beta(shape1, shape2)

triangle(lower, upper, peak = (lower + upper)/2)

Arguments

mean
Distribution mean.
sd
Distribution standard deviation.
meanlog
Mean on the log scale.
sdlog
SD on the log scale.
prob
Proportion.
size
Size of sample used to estimate proportion.
...
Dirichlet distribution parameters.
mu
Mean on the logit scale.
sigma
SD on the logit scale.
shape1
for beta distribution
shape2
for beta distribution
lower
lower bound of triangular distribution.
upper
upper bound of triangular distribution.
peak
peak of triangular distribution.
x
A distribution function, see details.

Details

These functions are not exported, but only used in define_psa(). To specify a user-made function use define_distribution.

define_distribution takes as argument a function with a single argument, x, corresponding to a vector of quantiles. It returns the distribution values for the given quantiles. See examples

Examples

Run this code
define_distribution(
  function(x) stats::qexp(p = x, rate = 0.5)
)

Run the code above in your browser using DataLab