Learn R Programming

heplots (version 1.3-1)

plot.robmlm: Plot observation weights from a robust multivariate linear models

Description

Creates an index plot of the observation weights assigned in the last iteration of robmlm. Observations with low weights have large residual squared distances and are potential multivariate outliers with respect to the fitted model.

Usage

"plot"(x, labels, id.weight = 0.7, id.pos = 4, pch = 19, col = palette()[1], cex = par("cex"), segments = FALSE, xlab = "Case index", ylab = "Weight in robust MANOVA", ...)

Arguments

x
A "robmlm" object
labels
Observation labels; if not specified,uses rownames from the original data
id.weight
Threshold for identifying obsrevations with small weights
id.pos
Position of observation label relative to the point
pch
Point symbol(s); can be a vector of length equal to the number of observations in the data frame
col
Point color(s)
cex
Point character size(s)
segments
logical; if TRUE, draw line segments from 1.o down to the point
xlab
x axis label
ylab
y axis label
...
other arguments passed to plot

Value

Returns invisibly the weights for the observations labeled in the plot

See Also

robmlm

Examples

Run this code
data(Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
plot(sk.rmod, col=Skulls$epoch)
axis(side=3, at=15+seq(0,120,30), labels=levels(Skulls$epoch), cex.axis=1)

# Pottery data

pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
plot(pottery.rmod, col=Pottery$Site, segments=TRUE)

# SocialCog data

data(SocialCog)
SC.rmod <- robmlm(cbind( MgeEmotions, ToM, ExtBias, PersBias) ~ Dx,
               data=SocialCog)
plot(SC.rmod, col=SocialCog$Dx, segments=TRUE)


Run the code above in your browser using DataLab