Learn R Programming

highD2pop (version 1.0)

GCT.sim: Generalized component test simulator

Description

Performs the generalized component test from Gregory et al. (2014) on multiple data sets generated by build2popData.

Usage

GCT.sim(DATA, r, smoother = "parzen", ntoorderminus = 2)

Arguments

DATA
an object returned by build2popData which is a list of S data sets.
r
the lag window size for variance estimation.
smoother
the lag window used in the variance estimation. Possible values are "parzen" and "trapezoid".
ntoorderminus
a value of 0,1, or 2 such that the centering constant will retain terms of order n^(-ntoorderminus). Enter 0 for the moderate-p GCT, and enter 2 for the large-p GCT. A value of 1 may be entered to retain only terms which are O(1/n), appropriate for a size of p between moderate and large.

Value

TSvalues
the values of the unstudentized test statistic.
pvalues
the p-values.
smoothtype
the choice of the lag window used in variance estimation.
T
the values of the studentized test statistic.
cent
the values of the centering constant.
var
the values of the estimated variance of the test statistic.

References

Gregory, K., Carroll, R. J., Baladandayuthapani, V. and Lahiri, S. (2015). A two-sample test for equality of means in high dimension. Journal of the American Statistician, to appear

See Also

GCT.test

Examples

Run this code
	
## Not run: 
# 
# DATA <-build2popData(	
# 	n = 15,
# 	m = 20,
# 	p = 500,
# 	muX = rep(0,500),
# 	muY = rep(0,500),
# 	commoncov = FALSE,
# 	VarScaleY = 1,
# 	dep = "ARMA",
# 	ARMAparms = list(coefs=list(ma=c(.2,.3) , ar=c(.4,-.1))),
# 	LRparm = .75,
# 	S = 25,
# 	innov = function(n,...) rnorm(n,0,1),
# 	heteroscedastic=TRUE,
# 	het.diag = diag(.1 + rexp(500,1/2))
# 	)	
# 	
# GCT.sim(DATA,r=20,smoother="parzen")
# 
# ## End(Not run)

Run the code above in your browser using DataLab