Learn R Programming

highfrequency (version 0.4)

medRQ: An estimator of integrated quarticity from applying the median operator on blocks of three returns.

Description

Function returns the medRQ, defined in Andersen et al. (2012). Assume there is $N$ equispaced returns in period $t$. Let $r_{t,i}$ be a return (with $i=1, \ldots,N$) in period $t$. Then, the medRQ is given by $$\mbox{medRQ}_{t}=\frac{3\pi N}{9\pi +72 - 52\sqrt{3}} \left(\frac{N}{N-2}\right) \sum_{i=2}^{N-1} \mbox{med}(|r_{t,i-1}|, |r_{t,i}|, |r_{t,i+1}|)^4$$

Usage

medRQ (rdata, align.by=NULL, align.period=NULL, makeReturns=FALSE,...)

Arguments

rdata
a zoo/xts object containing all returns in period t for one asset.
align.by
a string, align the tick data to "seconds"|"minutes"|"hours"
align.period
an integer, align the tick data to this many [seconds|minutes|hours].
makeReturns
boolean, should be TRUE when rdata contains prices instead of returns. FALSE by default.
...
additional arguments.

Value

  • numeric

References

Andersen, T. G., D. Dobrev, and E. Schaumburg (2012). Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics, 169(1), 75- 93.

Examples

Run this code
data(sample_tdata)
medRQ(rdata= sample_tdata$PRICE, align.by= "minutes", align.period =5, makeReturns= TRUE)
medRQ

Run the code above in your browser using DataLab