Learn R Programming

hmmm (version 1.0.0)

loglin.model: define a log-linear model

Description

Function to specify a hierarchical log-linear model. This is a particular case of a hmm model.

Usage

loglin.model(lev, int = NULL, strata = 1, dismarg = 0, type = "b", 
D = TRUE, c.gen = TRUE, printflag = FALSE, names = NULL, formula = NULL)

Arguments

lev
Vector of number of categories of variables
int
Generating class of the log-linear model (must be a list) or list of all the interactions included
strata
Number of strata
dismarg
List of interactions constrained by inequalities - see `hmmm.model'
type
"b" for baseline logits, "l" for local logits
D
Input argument for inequalities - see `hmmm.model'
c.gen
If FALSE the input int must be the list of the minimal interaction sets to be excluded
printflag
If TRUE information on the included and excluded interactions are given
names
A character vector whose elements are the names of the variables
formula
A formula describing a log-linear model

Value

  • An object of the class hmmmmod defining a log-linear model that can be estimated by `hmmm.mlfit'.

Details

This function simplifies `hmmm.model' in the case of log-linear models. If formula is employed, c.gen and int must not be declared and printflag is not used.

References

Agresti A (2012) Categorical data Analysis, (3ed), Wiley, New York. Bergsma W, Croon M, Hagenaars JA (2009) Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data. Springer.

See Also

hmmm.model, hmmm.mlfit, create.XMAT

Examples

Run this code
data(madsen)
y<-getnames(madsen)
names<-c("Infl","Sat","Co","Ho")

f<-~Co*Ho+Sat*Co+Infl*Co+Sat*Ho+Infl*Sat
model<-loglin.model(lev=c(3,3,2,4),formula=f,names=names)

# alternatively 
# model<-loglin.model(lev=c(3,3,2,4),
# int=list(c(3,4),c(2,3),c(1,3),c(2,4),c(1,2)),names=names)

mod<-hmmm.mlfit(y,model,maxit=3000)
print(mod,printflag=TRUE)

Run the code above in your browser using DataLab