Learn R Programming

⚠️There's a newer version (2.1.4.1) of this package.Take me there.

hoa (version 2.1.2)

Higher Order Likelihood Inference

Description

Performs likelihood-based inference for a wide range of regression models. Provides higher-order approximations for inference based on extensions of saddlepoint type arguments as discussed in the book Applied Asymptotics: Case Studies in Small-Sample Statistics by Brazzale, Davison, and Reid (2007).

Copy Link

Version

Install

install.packages('hoa')

Monthly Downloads

36

Version

2.1.2

License

GPL (>= 2) | file LICENCE

Maintainer

Alex-Antoine Fortin

Last Published

July 14th, 2015

Functions in hoa (2.1.2)

babies

Crying Babies Data
dormicum

Dormicum Data
print.nlreg.contours

Use print() on a `nlreg.contours' object
plot.nlreg.profiles

Use plot() on a `profile.nlreg' and `all.profiles.nlreg' object
qStheta

Support for `nlreg' package of `hoa' bundle
rsm.diag

Diagnostics for Regression-Scale Models
rsm.fit

Fit a Regression-Scale Model Without Computing the Model Matrix
print.family.rsm

Use print() on a ``family.rsm'' object
nlreg.object

Nonlinear Heteroscedastic Model Object
nlreg.contours.object

Contour Object for Nonlinear Heteroscedastic Models
print.cond

Use print() on a ``cond'' object
print.mpl

Use print() on a `mpl' object
ria

Radioimmunoassay Data
Dmean

Differentiate the Mean Function of a Nonlinear Model
family.rsm.object

Family Object for Regression-Scale Models
logLik.nlreg

Compute the Log Likelihood for Nonlinear Heteroscedastic Models
nlreg.diag

Nonlinear Heteroscedastic Model Diagnostics
print.summary.mpl

Use print() on a `summary.mpl' object
residuals.nlreg

Use residuals() on a `nlreg' object
airway

Airway Data
anova.rsm

ANOVA Table for a RSM Object
daphnia

`Daphnia Magna' Data
family.summary.cond

Use family() on a ``summary.cond'' object
cond.rsm

Approximate Conditional Inference in Regression-Scale Models
cond.object

Approximate Conditional Inference Object
fraudulent

Fraudulent Automobile Insurance Claims Data
rsm.dispersion

Support for Functions rsm.fit and rsm.surv
rsm.distributions

RSM Family Support Object
expInfo

Returns the Expected Information Matrix --- Generic Function
summary.fr

Likelihood-Based Confidence Intervals Based on fr Object
rsm.object

Regression-Scale Model Object
summary.cond

Summary Method for Objects of Class ``cond''
cond

Approximate Conditional Inference - Generic Function
expInfo.nlreg

Expected Information Matrix for `nlreg' Objects
print.nlreg.profiles

Use print() on a `nlreg.profile' and `all.nlreg.profiles' object
rabbits

Rabbits Data
rsm.null

Fit an Empty Regression-Scale Model
var2cor.nlregmpl

Use var2cor() on a `nlreg' and `mpl' object
summary.nlreg.profile

Summary Method for Objects of Class `nlreg.profile'
rsm.surv

Fit a Regression-Scale Model Without Computing the Model Matrix
C1

Six Herbicide Data Sets
fungal

Fungal Infections Treatment Data
logLik.rsm

Compute the Log Likelihood for Regression-Scale Models
nuclear

Nuclear Power Station Data
plot.nlreg.contours

Use plot() on a `nlreg.contours' object
obsInfo

Returns the Observed Information Matrix --- Generic Function
print.summary.marg

Use print() on a ``summary.marg'' object
print.summary.nlreg

Use print() on a `summary.nlreg' object
print.nlreg

Use print() on a `nlreg' object
vcov.rsm

Calculate Variance-Covariance Matrix for a Fitted RSM Model
Huber

Huber's Least Favourable Distribution
Dvar

Differentiate the Variance Function of a Nonlinear Model
coef.nlreg

Use coef() on a `nlreg' object
houses

House Price Data
cond.glm

Approximate Conditional Inference for Logistic and Loglinear Models
mpl.nlreg

Maximum Adjusted Profile Likelihood Estimates for a `nlreg' Object
nlreg

Fit a Nonlinear Heteroscedastic Model via Maximum Likelihood
plot.cond

Generate Plots for an Approximate Conditional Inference Object
plot.nlreg.diag

Diagnostic Plots for Nonlinear Heteroscedastic Models
plot.marg

Generate Plots for an Approximate Marginal Inference Object
param

Extract All Parameters from a Model --- Generic Function
metsulfuron

Metsulfuron Methyl Data
profile.nlreg

Profile Method for `nlreg' Objects
helicopter

Helicopter Data
param.nlreg

Use param() on a `nlreg' object
rsm.families

Generate a RSM Family Object
print.summary.rsm

Use print() on a ``summary.rsm'' object
print.marg

Use print() on a ``marg'' object
rsm

Fit a Regression-Scale Model
print.summary.nlreg.profiles

Use print() on a `summary.nlreg.profile' and `summary.all.nlreg.profiles' object
summary.rsm

Summary Method for Regression-Scale Models
update.rsm

Update and Re-fit a RSM Model Call
summary.nlreg

Summary Method for Nonlinear Heteroscedastic Models
print.rsm

Use print() on a ``rsm'' object
summary.all.nlreg.profiles

Summary Method for Objects of Class `all.nlreg.profiles'
var2cor

Convert Covariance Matrix to Correlation Matrix --- Generic Function
urine

Urine Data
anova.rsmlist

Use anova() on a ``rsmlist'' object
all.profiles.nlreg

Support for function `profile.nlreg'
fitted.nlreg

Use fitted() on a `nlreg' object
contour.all.nlreg.profiles

Contour Method for `nlreg' Objects
nlreg.profile.objects

Profile Objects for Nonlinear Heteroscedastic Models
venice

Sea Level Data
family.cond

Use family() on a ``cond'' object
family.rsm

Use family() on a ``rsm'' object
mpl

Maximum Adjusted Profile Likelihood Estimation --- Generic Function
make.family.rsm

Support for RSM Family Functions
plot.fr

Plot a fr Object
darwin

Darwin's Data on Growth Rates of Plants
residuals.rsm

Compute Residuals for Regression-Scale Models
rsm.diag.plots

Diagnostic Plots for Regression-Scale Models
summary.marg

Summary Method for Objects of Class ``marg''
summary.mpl

Summary Method for `mpl' Objects
tem

Tangent exponential model: Higher Order Likelihood Approximation
mpl.object

Maximum Adjusted Profile Likelihood Object
chlorsulfuron

Chlorsulfuron Data
aids

AIDS Symptoms and AZT Use Data
hoa

Higher Order Likelihood Inference
marg.object

Approximate Marginal Inference Object
obsInfo.nlreg

Observed Information Matrix for `nlreg' Objects
print.summary.cond

Use print() on a ``summary.cond'' object