Learn R Programming

hoa (version 2.1.4.1)

hoa: Higher Order Likelihood Inference

Description

Performs likelihood-based inference for a wide range of regression models. Provides higher-order approximations for inference based on extensions of saddlepoint type arguments as discussed in the book Applied Asymptotics: Case Studies in Small-Sample Statistics by Brazzale, Davison, and Reid (2007).

Arguments

Details

Package: hoa
Version: 2.1.2
Date: 2015-07-13
Depends: R (>= 3.0.0)
Imports: graphics, statmod, stats, survival, utils
Suggests: boot, csampling
License: GPL (>= 2)
URL: http://www.r-project.org, http://statwww.epfl.ch/AA/
LazyLoad: yes
LazyData: yes

Index:

Functions:
=========
cond                    Approximate Conditional Inference - Generic
                        Function
cond.glm                Approximate Conditional Inference for Logistic
                        and Loglinear Models
cond.object             Approximate Conditional Inference Object
family.cond             Use family() on a "cond" object
family.summary.cond     Use family() on a "summary.cond" object
plot.cond               Generate Plots for an Approximate Conditional
                        Inference Object
print.summary.cond      Use print() on a "summary.cond" object
summary.cond            Summary Method for Objects of Class "cond"
                        Function
cond.rsm                Approximate Conditional Inference in
                        Regression-Scale Models
dHuber                  Huber's Least Favourable Distribution
family.rsm              Use family() on a "rsm" object
family.rsm.object       Family Object for Regression-Scale Models
logLik.rsm              Compute the Log Likelihood for
                        Regression-Scale Models
marg.object             Approximate Marginal Inference Object
plot.fr                 Plot a Fraser-Reid Object
plot.marg               Generate Plots for an Approximate Marginal
                        Inference Object
print.summary.marg      Use print() on a "summary.marg" object
residuals.rsm           Compute Residuals for Regression-Scale Models
rsm                     Fit a Regression-Scale Model
rsm.diag                Diagnostics for Regression-Scale Models
rsm.diag.plots          Diagnostic Plots for Regression-Scale Models
rsm.families            Generate a RSM Family Object
rsm.fit                 Fit a Regression-Scale Model Without Computing
                        the Model Matrix
rsm.null                Fit an Empty Regression-Scale Model
rsm.object              Regression-Scale Model Object
rsm.surv                Fit a Regression-Scale Model Without Computing
                        the Model Matrix
summary.marg            Summary Method for Objects of Class "marg"
summary.rsm             Summary Method for Regression-Scale Models
tem                     Tangent exponential model Higher Order Likelihood
                        Approximation
update.rsm              Update and Re-fit a RSM Model Call
vcov.rsm                Calculate Variance-Covariance Matrix for a
                        Fitted RSM Model

Dmean Differentiate the Mean Function of a Nonlinear Model Dvar Differentiate the Variance Function of a Nonlinear Model contour.all.nlreg.profiles Contour Method for 'nlreg' Objects expInfo Returns the Expected Information Matrix -- Generic Function expInfo.nlreg Expected Information Matrix for 'nlreg' Objects logLik.nlreg Compute the Log Likelihood for Nonlinear Heteroscedastic Models mpl Maximum Adjusted Profile Likelihood Estimation -- Generic Function mpl.nlreg Maximum Adjusted Profile Likelihood Estimates for a 'nlreg' Object mpl.object Maximum Adjusted Profile Likelihood Object nlreg Fit a Nonlinear Heteroscedastic Model via Maximum Likelihood nlreg.diag Nonlinear Heteroscedastic Model Diagnostics nlreg.object Nonlinear Heteroscedastic Model Object obsInfo Returns the Observed Information Matrix -- Generic Function obsInfo.nlreg Observed Information Matrix for 'nlreg' Objects param Extract All Parameters from a Model -- Generic Function plot.nlreg.contours Use plot() on a 'nlreg.contours' object plot.nlreg.diag Diagnostic Plots for Nonlinear Heteroscedastic Models plot.nlreg.profile Use plot() on a 'profile.nlreg' and 'all.profiles.nlreg' object profile.nlreg Profile Method for 'nlreg' Objects summary.all.nlreg.profiles Summary Method for Objects of Class 'all.nlreg.profiles' summary.fr Likelihood-Based Confidence Intervals Based on Fraser-Reid Object summary.mpl Summary Method for 'mpl' Objects summary.nlreg Summary Method for Nonlinear Heteroscedastic Models summary.nlreg.profile Summary Method for Objects of Class 'nlreg.profile' var2cor Convert Covariance Matrix to Correlation Matrix -- Generic Function

Datasets: ======== aids AIDS Symptoms and AZT Use Data airway Airway Data babies Crying Babies Data darwin Darwin's Data on Growth Rates of Plants dormicum Dormicum Data fraudulent Fraudulent Automobile Insurance Claims Data fungal Fungal Infections Treatment Data houses House Price Data nuclear Nuclear Power Station Data rabbits Rabbits Data urine Urine Data venice Sea Level Data C1 Herbicide Data (Chlorsulfuron) C2 Herbicide Data (Chlorsulfuron) C3 Herbicide Data (Chlorsulfuron) C4 Herbicide Data (Chlorsulfuron) M2 Herbicide Data (Metsulfuron Methyl) M4 Herbicide Data (Metsulfuron Methyl) chlorsulfuron Chlorsulfuron Data daphnia 'Daphnia Magna' Data helicopter Paper Helicopter Data metsulfuron Metsulfuron Methyl Data ria Radioimmunoassay Data

Further information is available in the following vignettes:

Rnews-paper hoa: An R Package for Higher Order Likelihood Inference (source, pdf)