Set a upper bound on the coefficient of specific covariates.
Usage
upper(kvars)
Value
A holistic generalized model constraint, object inheriting from class "hglmc".
Arguments
kvars
a named vector giving the upper bounds. The names should correspond to the names
of the covariates in the model matrix.
References
McDonald, J. W., & Diamond, I. D. (1990).
On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints.
Biometrics, 46 (1): 201–206.
tools:::Rd_expr_doi("10.2307/2531643")
Slawski, M., & Hein, M. (2013).
Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization.
Electronic Journal of Statistics, 7: 3004-3056.
tools:::Rd_expr_doi("10.1214/13-EJS868")