Learn R Programming

homtest (version 1.0-5)

GUMBEL: Two parameter Gumbel distribution and L-moments

Description

GUMBEL provides the link between L-moments of a sample and the two parameter Gumbel distribution.

Usage

f.gumb (x, xi, alfa)
F.gumb (x, xi, alfa)
invF.gumb (F, xi, alfa)
Lmom.gumb (xi, alfa)
par.gumb (lambda1, lambda2)
rand.gumb (numerosita, xi, alfa)

Arguments

x
vector of quantiles
xi
vector of gumb location parameters
alfa
vector of gumb scale parameters
F
vector of probabilities
lambda1
vector of sample means
lambda2
vector of L-variances
numerosita
numeric value indicating the length of the vector to be generated

Value

  • f.gumb gives the density $f$, F.gumb gives the distribution function $F$, invF.gumb gives the quantile function $x$, Lmom.gumb gives the L-moments ($\lambda_1$, $\lambda_2$, $\tau_3$, $\tau_4$)), par.gumb gives the parameters (xi, alfa), and rand.gumb generates random deviates.

Details

See http://en.wikipedia.org/wiki/Fisher-Tippett_distribution for an introduction to the Gumbel distribution. Definition

Parameters (2): $\xi$ (location), $\alpha$ (scale).

Range of $x$: $-\infty < x < \infty$.

Probability density function: $$f(x) = \alpha^{-1} \exp[-(x-\xi)/\alpha] \exp{- \exp[-(x-\xi)/\alpha]}$$

Cumulative distribution function: $$F(x) = \exp[-\exp(-(x-\xi)/\alpha)]$$

Quantile function: $x(F) = \xi - \alpha \log(-\log F)$.

L-moments

$$\lambda_1 = \xi + \alpha \gamma$$ $$\lambda_2 = \alpha \log 2$$ $$\tau_3 = 0.1699 = \log(9/8)/ \log 2$$ $$\tau_4 = 0.1504 = (16 \log 2 - 10 \log 3)/ \log 2$$

Here $\gamma$ is Euler's constant, 0.5772...

Parameters

$$\alpha=\lambda_2 / \log 2$$ $$\xi = \lambda_1 - \gamma \alpha$$

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK.

See Also

rnorm, runif, GEV, Lmoments.