GUMBEL
provides the link between L-moments of a sample and the two parameter
Gumbel distribution.f.gumb (x, xi, alfa)
F.gumb (x, xi, alfa)
invF.gumb (F, xi, alfa)
Lmom.gumb (xi, alfa)
par.gumb (lambda1, lambda2)
rand.gumb (numerosita, xi, alfa)
f.gumb
gives the density $f$, F.gumb
gives the distribution function $F$, invF.gumb
gives
the quantile function $x$, Lmom.gumb
gives the L-moments ($\lambda_1$, $\lambda_2$, $\tau_3$, $\tau_4$)), par.gumb
gives the parameters (xi
, alfa
), and rand.gumb
generates random deviates.Parameters (2): $\xi$ (location), $\alpha$ (scale).
Range of $x$: $-\infty < x < \infty$.
Probability density function: $$f(x) = \alpha^{-1} \exp[-(x-\xi)/\alpha] \exp{- \exp[-(x-\xi)/\alpha]}$$
Cumulative distribution function: $$F(x) = \exp[-\exp(-(x-\xi)/\alpha)]$$
Quantile function: $x(F) = \xi - \alpha \log(-\log F)$.
L-moments
$$\lambda_1 = \xi + \alpha \gamma$$ $$\lambda_2 = \alpha \log 2$$ $$\tau_3 = 0.1699 = \log(9/8)/ \log 2$$ $$\tau_4 = 0.1504 = (16 \log 2 - 10 \log 3)/ \log 2$$
Here $\gamma$ is Euler's constant, 0.5772...
Parameters
$$\alpha=\lambda_2 / \log 2$$ $$\xi = \lambda_1 - \gamma \alpha$$
rnorm
, runif
, GEV
, Lmoments
.