# DATA
data(healthsurvey)
# the order of response levels decreases from the best health to
# the worst health; hence the hopit() parameter decreasing.levels
# is set to TRUE
levels(healthsurvey$health)
# Example 1 ---------------------
# fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,
thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)
# calculate the health index cut-points
z <- getCutPoints(model = model1)
z$cutpoints
plot(z)
# tabulate the adjusted health levels for individuals (Jurges method):
rev(table(z$adjusted.levels))
# tabulate the original health levels for individuals
table(model1$y_i)
# tabulate the predicted health levels
table(model1$Ey_i)
Run the code above in your browser using DataLab