# NOT RUN {
## Let's approximate some three random variables joint interval distribution
## function (idf) at lower and upper points (0,1, 0.2, 0.3) and
## (0,4, 0.5, 0.6) correspondingly with hermite polynomial of (1,2,3)
## degrees which polynomial coefficients equals 1 except coefficient
## related to x1*(x^3) polynomial element which equals 2.
## Also suppose that normal density related mean vector equals
## (1.1, 1.2, 1.3) while standard deviations vector is (2.1, 2.2, 2.3).
## In this example let's calculate interval distribution approximating
## function gradient respect to polynomial coefficients.
# Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)
# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)
# Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2
# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)
# Calculate idf approximation gradient respect to
# polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)
# Condition second component to be 0.7
# Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)
# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)
# Calculate conditional(on x2 = 0.5) idf approximation
# respect to polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)
# Consider third component marginal distribution
# conditioned on the second component 0.7 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)
# Calculate conditional (on x2=0.5) marginal (for x3) idf approximation
# respect to:
# polynomial coefficients
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)
# mean
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "mean")
# sd
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "sd")
# x_lower
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "x_lower")
# x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "x_upper")
# }
Run the code above in your browser using DataLab