Learn R Programming

hqreg (version 1.4-1)

plot.cv.hqreg: Plot the cross-validation curve for a "cv.hqreg" object

Description

Plot the cross-validation curve for a "cv.hqreg" object against the lambda values used, along with standard error bars.

Usage

# S3 method for cv.hqreg
plot(x, log.l = TRUE, nvars = TRUE, ...)

Arguments

x

A "cv.hqreg" object.

log.l

Should log(lambda) be used instead of lambda for X-axis? Default is TRUE.

nvars

If TRUE (the default), places an axis on top of the plot denoting the number of variables with nonzero coefficients at each lambda.

...

Other graphical parameters to plot

Author

Congrui Yi <eric.ycr@gmail.com>

Details

Produces a plot of mean cv errors at each lambda along with upper and lower standard error bars.

References

Yi, C. and Huang, J. (2017) Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression, tools:::Rd_expr_doi("10.1080/10618600.2016.1256816")
Journal of Computational and Graphical Statistics

See Also

hqreg, cv.hqreg

Examples

Run this code
X = matrix(rnorm(1000*100), 1000, 100)
beta = rnorm(10)
eps = 4*rnorm(1000)
y = drop(X[,1:10] %*% beta + eps)
cv = cv.hqreg(X, y, seed = 123)
plot(cv)

Run the code above in your browser using DataLab