Learn R Programming

hsstan (version 0.8.2)

posterior_predict.hsstan: Posterior predictive distribution

Description

Draw from the posterior predictive distribution of the outcome.

Usage

# S3 method for hsstan
posterior_predict(object, newdata = NULL, nsamples = NULL, seed = NULL, ...)

Value

A matrix of size S by N, where S is the number of simulations from the posterior predictive distribution, and N is the number of data points.

Arguments

object

An object of class hsstan.

newdata

Optional data frame containing the variables to use to predict. If NULL (default), the model matrix is used. If specified, its continuous variables should be standardized, since the model coefficients are learnt on standardized data.

nsamples

A positive integer indicating the number of posterior samples to use. If NULL (default) all samples are used.

seed

Optional integer defining the seed for the pseudo-random number generator.

...

Currently ignored.

Examples

Run this code
utils::example("hsstan", echo=FALSE)
# continued from ?hsstan
posterior_predict(hs.biom)

Run the code above in your browser using DataLab