Learn R Programming

hydroEvents

Events from individual hydrologic time series are extracted, and events from multiple time series can be matched to each other.

This code can be downloaded from CRAN: https://cran.r-project.org/package=hydroEvents

A detailed description of each function, usage, and suggested parameters is provided in the following: Wasko, C., Guo, D., 2022. Understanding event runoff coefficient variability across Australia using the hydroEvents R package. Hydrol. Process. 36, e14563. https://doi.org/10.1002/hyp.14563

If using this code a citation to the above manuscript would be greatly appreciated.

Example 1

Aim: Calculate baseflow and baseflow index

This code reproduces Figure 5 in Wasko and Guo (2022).

library(hydroEvents)
bf.A.925 = baseflowA(dataBassRiver, alpha = 0.925)$bf
bf.A.980 = baseflowA(dataBassRiver, alpha = 0.980)$bf

bf.B.925 = baseflowB(dataBassRiver, alpha = 0.925)$bf
bf.B.980 = baseflowB(dataBassRiver, alpha = 0.980)$bf

bfi.A.925 = sum(bf.A.925)/sum(dataBassRiver) # 0.22
bfi.A.980 = sum(bf.A.980)/sum(dataBassRiver) # 0.09
bfi.B.925 = sum(bf.B.925)/sum(dataBassRiver) # 0.39
bfi.B.980 = sum(bf.B.980)/sum(dataBassRiver) # 0.20

plot(dataBassRiver, type = "l", col = "#377EB8", lwd = 2, mgp = c(2, 0.6, 0), ylab = "Flow (ML/day)", xlab = "Index", xlim = c(0, 70))
lines(bf.A.925, lty = 2)
lines(bf.A.980, lty = 3)
lines(bf.B.925, lty = 1)
lines(bf.B.980, lty = 4)
legend("topright", lty = c(2, 3, 1, 4), col = c("black", "black", "black", "black"), cex = 0.8, bty = "n",
       legend = c(paste0("BFI(A, 0.925) = ", format(round(bfi.A.925, 2), nsmall = 2)),
                  paste0("BFI(A, 0.980) = ", format(round(bfi.A.980, 2), nsmall = 2)),
                  paste0("BFI(B, 0.925) = ", format(round(bfi.B.925, 2), nsmall = 2)),
                  paste0("BFI(B, 0.980) = ", format(round(bfi.B.980, 2), nsmall = 2))))

Example 2

Aim: Extract precipitation events

events = eventPOT(dataLoch, threshold = 1, min.diff = 2)
plotEvents(dataLoch, dates = NULL, events = events, type = "hyet", ylab = "Rainfall [mm]", main = "Rainfall Events (threshold = 1, min.diff = 2)")

Example 3

Aim: Extract flow events (and demonstrate the different methods available)

This code reproduces Figure 6 in Wasko and Guo (2022).

library(hydroEvents)
bf = baseflowB(dataBassRiver)
Max_res = eventMaxima(dataBassRiver-bf$bf, delta.y = -0.75, delta.x = 1, threshold = 0)
Min_res = eventMinima(dataBassRiver-bf$bf, delta.y = 100, delta.x = 3, threshold = 0)
PoT_res = eventPOT(dataBassRiver-bf$bf, threshold = 0, min.diff = 1)
BFI_res = eventBaseflow(dataBassRiver, BFI_Th = 0.5, min.length = 1)

par(mfrow = c(2, 2), mar = c(3, 2.7, 2, 1))
plotEvents(data = dataBassRiver, events = PoT_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventPOT")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = Max_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventMaxima")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = Min_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventMinima")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = BFI_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventBaseflow")
lines(1:length(bf$bf), bf$bf, lty = 2)

Example 4

Aim: Identify rising and falling limbs

library(hydroEvents)
qdata = WQ_Q$qdata[[1]]
BF_res = eventBaseflow(qdata$Q_cumecs)
limbs(data = qdata$Q_cumecs, dates = NULL, events = BF_res, main = "with 'eventBaseflow'")

Example 5

Aim: Calculate CQ (concentration-discharge) relationships

library(hydroEvents)
# Identify flow events
qdata = WQ_Q$qdata[[1]]
BF_res = eventBaseflow(qdata$Q_cumecs)
MAX_res = eventMaxima(qdata$Q_cumecs, delta.y = 0.5, threshold = 0.5)

# Aggregate water quality data to daily time step
wqdata=WQ_Q$wqdata[[1]]
wqdata = data.frame(time=wqdata$time,wq=as.vector(wqdata$WQ))

wqdaily = rep(NA,length(unique(substr(wqdata$time,1,10))))
for (i in 1:length(unique(substr(wqdata$time,1,10)))) {
  wqdaily[i] = mean(wqdata$wq[which(substr(wqdata$time,1,10)==
                                      unique(substr(wqdata$time,1,10))[i])])
}
wqdailydata = data.frame(time=as.Date(strptime(unique(substr(wqdata$time,1,10)),"%d/%m/%Y")),wq=wqdaily)

# A function to plot the CQ relationship by event period
CQ_event = function(C,Q,events,methodname) {
  QinWQ = which(Q$time%in%C$time)

  risfal_res = limbs(data=as.vector(Q$Q_cumecs),events=events,main = paste("Events identified -",methodname))

  allRL_ind = unlist(apply(risfal_res,1,function(x){x[6]:x[7]}))
  allFL_ind = unlist(apply(risfal_res,1,function(x){x[8]:x[9]}))

  RL_ind = which(allRL_ind%in%QinWQ)
  FL_ind = which(allFL_ind%in%QinWQ)

  allEV_ind = unlist(apply(risfal_res,1,function(x){x[1]:x[2]}))
  allBF_ind = as.vector(1:length(as.vector(Q$Q_cumecs)))[-allEV_ind]
  EV_ind = which(allEV_ind%in%QinWQ)
  BF_ind = which(allBF_ind%in%QinWQ)

  RL_indwq = which(QinWQ%in%allRL_ind[RL_ind])
  FL_indwq = which(QinWQ%in%allFL_ind[FL_ind])
  BF_indwq = which(QinWQ%in%allBF_ind[BF_ind])
  EV_indwq = which(QinWQ%in%allEV_ind[EV_ind])

  plot(C$wq~Q$Q_cumecs[QinWQ],xlab="Q (mm/d)",ylab="C (mg/L)",main = paste("C-Q relationship -",methodname),pch=20)
  points(C$wq[RL_indwq]~Q$Q_cumecs[allRL_ind[RL_ind]],col="blue",pch=20)
  points(C$wq[FL_indwq]~Q$Q_cumecs[allFL_ind[FL_ind]],col="red",pch=20)
  points(C$wq[BF_indwq]~Q$Q_cumecs[allBF_ind[BF_ind]],col="grey",pch=20)

  legend("topright",
         legend=c("rising limb","falling limb","baseflow"),
         pch=20,col=c("blue","red","grey"))

  CQ = cbind(C$wq,Q$Q_cumecs[QinWQ])
  res = list(event=EV_indwq,base=BF_indwq,rising=RL_indwq,falling=FL_indwq,
             eventCQ=CQ[EV_indwq,],baseCQ=CQ[BF_indwq,],
             risingCQ=CQ[RL_indwq,],fallingCQ=CQ[FL_indwq,])
}

# Final plot of CQ comparison from two event approaches
par(mfcol=c(2,2))
par(mar=c(2,2,2,2))
CQ_event(wqdailydata,qdata, BF_res, methodname="eventBaseflow")
CQ_event(wqdailydata,qdata, MAX_res, methodname="eventMaxima")

Example 6

Aim: Demonstrate matching rainfall to runoff

library(hydroEvents)
# Prepare data
srt = as.Date("2015-02-05")
end = as.Date("2015-04-01")
dat = dataCatchment$`105105A`[which(dataCatchment$`105105A`$Date >= srt & dataCatchment$`105105A`$Date <= end),]
  
# Extract events
events.P = eventPOT(dat$Precip_mm, threshold = 1, min.diff = 1)
events.Q = eventMaxima(dat$Flow_ML, delta.y = 2, delta.x = 1, thresh = 70)

par(mfrow = c(2, 1), mar = c(3, 2.7, 2, 1))
plotEvents(dat$Precip_mm, dates = dat$Date, events = events.P, type = "hyet", colline = "#377EB8", colpnt = "#E41A1C",ylab = "Rainfall (mm)", xlab = 2015, main = "")
plotEvents(dat$Flow_ML,   dates = dat$Date, events = events.Q, type = "lineover", colpnt = "#E41A1C", colline = "#377EB8", ylab = "Flow (ML/day)", xlab = 2015, main = "")

The following code reproduces Figure 7 in Wasko and Guo (2022).

# Match events
library(RColorBrewer)
matched.1 = pairEvents(events.P, events.Q, lag = 5,  type = 1)  
matched.2 = pairEvents(events.P, events.Q, lag = 5,  type = 2)
matched.3 = pairEvents(events.P, events.Q, lag = 3,  type = 3)
matched.4 = pairEvents(events.P, events.Q, lag = 7, type = 4)
matched.5 = pairEvents(events.P, events.Q, lag = 5, type = 5)

par(mfrow = c(3, 2), mar = c(1.7, 3, 2.1, 3))
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.1, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 1", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3)
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.2, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 2", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3) 
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.3, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 3", ylab.2 = "Rainfall (mm)", ylab.1 = "Flow (ML/day)", cex.2 = 2/3) 
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.4, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 4", ylab.2 = "Rainfall (mm)", ylab.1 = "Flow (ML/day)", cex.2 = 2/3)
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.5, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 5", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3) 

Example 7

Aim: Demonstrate matching of rainfall and water level surge (residuals)

library(hydroEvents)

# Hourly rainfall (P) and water level surge (WL) at Burnie, Tasmania (Pluvio 91009; Tide gauge: IDO71005)
Psel  = data_P_WL$Psel
WLsel = data_P_WL$WLsel

# Find events in P and WL data
# Rain over 4mm is considered an event; events over 3 hrs apart are considered as separate
events.P = eventPOT(Psel, threshold = 4, min.diff = 3)

# WL surge residual over 0.05m is considered an event; events over 3 hrs apart are considered as separate
events.Q1 = eventMaxima(WLsel, delta.y = 0.05, delta.x = 3, thresh = 0.05) 

# Plot events
plotEvents(data = Psel, events = events.P, main = "Hourly precipitation (mm)", type = "hyet")
plotEvents(data = WLsel, events = events.Q1, main = "Hourly water level surge (m)", type = "lineover")

# Pairing events - use type = 5 to search both ways for the pairing
# Try two different values for the lag (search radius)
matched.1 = pairEvents(events.P, events.Q1, lag = 12, type = 5) 
matched.2 = pairEvents(events.P, events.Q1, lag = 24, type = 5)

plotPairs(data.1 = Psel, data.2 = WLsel, events = matched.1, type = "hyet", color.list=rainbow(nrow(matched.1)))
plotPairs(data.1 = Psel, data.2 = WLsel, events = matched.2, type = "hyet", color.list=rainbow(nrow(matched.2)))

Copy Link

Version

Install

install.packages('hydroEvents')

Monthly Downloads

342

Version

0.12.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Conrad Wasko

Last Published

February 12th, 2025

Functions in hydroEvents (0.12.0)

plotEvents

Plot Events
eventPOT

Event identification (using a peak over threshold algorithm)
plotPairs

Plot Paired Events
limbs

Extract rising/falling limbs
localMin

Local minima
dataCatchment

Catchment data
WQ_Q

Example water quality and streamflow data
data_P_WL

Example sub-daily rainfall and tidal water level data
baseflowA

Baseflow removal (after Fuka et al. 2018)
eventBaseflow

Event identification (using baseflow index)
calcStats

Extract statistics from events
baseflowB

Baseflow removal (after Ladson et al)
dataBassRiver

Streamflow data
dataLoch

Rainfall data
pairEvents

Pair Events
eventMaxima

Event identification (using local maxima as a basis)
eventMinima

Event identification (using local minima as a basis)