Learn R Programming

hydroGOF (version 0.5-4)

hydroGOF-package: Goodness-of-fit (GoF) functions for numerical and graphical comparison of simulated and observed time series, mainly focused on hydrological modelling.

Description

S3 functions implementing both statistical and graphical goodness-of-fit measures between observed and simulated values, to be used during the calibration, validation, and application of hydrological models.

Missing values in observed and/or simulated values can be removed before computations.

Arguments

Author

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Maintainer: Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Details

Package:hydroGOF
Type:Package
Version:0.5-3
Date:2024-01-21
License:GPL >= 2
LazyLoad:yes
Packaged:Sun Jan 21 17:34:26 -03 2024 ; MZB
BuiltUnder:R version 4.3.2 (2023-10-31) ;x86_64-pc-linux-gnu (64-bit)

Quantitative statistics included in this package are:

me Mean Errormae Mean Absolute Error
mse Mean Squared Errorrmse Root Mean Square Error
ubRMSE Unbiased Root Mean Square Errornrmse Normalized Root Mean Square Error
pbias Percent Biasrsr Ratio of RMSE to the Standard Deviation of the Observations
rSD Ratio of Standard DeviationsNSE Nash-Sutcliffe Efficiency
mNSE Modified Nash-Sutcliffe EfficiencyrNSE Relative Nash-Sutcliffe Efficiency
wNSE Weighted Nash-Sutcliffe Efficiencyd Index of Agreement
dr Refined Index of Agreementmd Modified Index of Agreement
rd Relative Index of Agreementcp Persistence Index
rPearson Pearson correlation coefficientR2 Coefficient of determination
br2 R2 multiplied by the coefficient of the regression line between sim and obsKGE Kling-Gupta efficiency
KGElf Kling-Gupta Efficiency for low valuesKGEnp Non-parametric version of the Kling-Gupta Efficiency
sKGE Split Kling-Gupta EfficiencyVE Volumetric efficiency
rSpearman Spearman's rank correlation coefficientpbiasfdc PBIAS in the slope of the midsegment of the flow duration curve
----------------------------------------------------------------------------------------------------------

References

Box, G. E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; Pierce, S.A. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic Models: Combining the Strengths of Manual and Automatic Methods, Water Resources Research, 36(12), 3663-3674. doi:10.1029/2000WR900207

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072

Entekhabi, D., Reichle, R. H., Koster, R. D., Crow, W. T. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi: 10.1175/2010JHM1223.1

Fenicia, F., D. P. Solomatine, H. H. G. Savenije, and P. Matgen. (2007) Soft combination of local models in a multi-objective framework. Hydrological and Earth Systems Science, Vol. 4, pp. 91-123. doi:10.5194/hessd-4-91-2007

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511

Gupta, Hoshin V., Harald Kling, Koray K. Yilmaz, Guillermo F. Martinez. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. (2009). Journal of Hydrology, Volume 377, Issues 1-2, 20, Pages 80-91. doi:10.1016/j.jhydrol.2009.08.003

Harmel, R.D.; Smith, P.K.; Migliaccio, K.W.; Chaubey, I.; Douglas-Mankin, K.R.; Benham, B.; Shukla, S.; Munoz-Carpena, R.; Robson, B.J., 2014. Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations. Environmental modelling and software, 57, 40-51. doi:10.1016/j.envsoft.2014.02.013

Krstic, G., Krstic, N.S., Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods, 15(2), 42. doi:10.22237/jmasm/1478004000

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model 2. Applications and Results, Water Resour. Res., 16(6), 1034-1044

Kling, H., M. Fuchs, and M. Paulin (2012), Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, Volumes 424-425, 6 March 2012, Pages 264-277, doi:10.1016/j.jhydrol.2012.01.011

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89-97, 2005. doi:10.5194/adgeo-5-89-2005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018

Mizukami, N.; Rakovec, O.; Newman, A. J.; Clark, M. P.; Wood, A. W.; Gupta, H. V.; Kumar, R. (2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models. doi:10.5194/hess-23-2601-2019

Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion of principles, J. Hydrol. 10 (1970), pp. 282-290. doi:10.1016/0022-1694(70)90255-6

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044

Pool, S., Vis, M. and Seibert, J. (2018). Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953. doi:/10.1080/02626667.2018.1552002

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGElf criterion. doi:10.5194/hess-22-4583-2018

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J. Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Willmott, C.J., Robeson, S.M. and Matsuura, K. (2012). A refined index of model performance. International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419

Willmott, C.J., Robeson, S.M., Matsuura, K. and Ficklin, D.L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling and Software, 73, pp.167-174. doi:10.1016/j.envsoft.2015.08.012

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184-194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O'Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90(C5), 8995-9005

Yapo, P. O.; Gupta, H. V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-1694(95)02918-4

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716

See Also

Examples

Run this code
obs <- 1:100
sim <- obs

# Numerical goodness of fit
gof(sim,obs)

# Reverting the order of simulated values
sim <- 100:1
gof(sim,obs)

if (FALSE) {
ggof(sim, obs)
}

##################
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
require(zoo)
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

# Generating a simulated daily time series, initially equal to observations
sim <- obs 

# Getting the numeric goodness-of-fit measures for the "best" (unattainable) case
gof(sim=sim, obs=obs)

# Randomly changing the first 2000 elements of 'sim', by using a normal 
# distribution  with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

# Getting the new numeric goodness of fit
gof(sim=sim, obs=obs)

# Graphical representation of 'obs' vs 'sim', along with the numeric 
# goodness-of-fit measures
if (FALSE) {
ggof(sim=sim, obs=obs)
}

Run the code above in your browser using DataLab