is.near_integer(i, tol=getOption("tolerance"))
is.nonpos(i)
is.zero(i)
isgood(x, tol)
thingfun(z, complex=FALSE)
crit(...)
lpham(x,n)isgood() and lpham()thingfun(), Boolean with default
FALSE meaning to return the modulus of the transforms and
TRUE meaning to return the complex values themselveslpham()is.near_integer(i)returnsTRUEifiistol] an integer;
if the option is unset then1e-11is used.is.nonpos()returnsTRUEifiis
near a nonpositive integeris.zero()returnsTRUEifiis,
er, near zeroisgood()checks for all elements ofxhaving absolute values less thantolthingfun()transforms input vectorzby
each of the six members of the anharmonic group, viewed as a
subgroup of the Mobius group of functions. It returns a real
six-column matrix with columns being the modulus of$z,z/(z-1),1-z,1/z,1/(1-z),1-1/z$. These six columns
correspond to the primary argument in equations 15.3.3 to 15.3.9,
p551 of AMS-55crit()returns the two critical points,$\frac{1}{2}\pm\frac{\sqrt{3}i}{2}$. These
points have unit modulus as do their six transforms bythingfun()lpham()returns the log of the Pochhammer
function$log\left(\Gamma(x+n)/\Gamma(x)\right)$