Usage
expectation_convex(input,
npoints_inhull = NULL, npoints_onhull = NULL,
check_memory = TRUE, userandom = FALSE,
method = "rejection", burnin = NULL, delta = NULL)
Arguments
input
A data frame or hypervolume object whose data are enclosed by the output hypervolume.
npoints_inhull
Number of random points in the output hypervolume. If NULL
and input
is of class Hypervolume
, defaults to a value that matches the point density of the input hypervolume; if NULL
and input
i
npoints_onhull
Number of data points to sample from the input to define the convex polytope. Samples are weighted by their Euclidean distance from the centroid of the input. If NULL
, defaults to 10^sqrt(n).
check_memory
If TRUE
, prints estimated memory usage and convex polytope size and exits. Otherwise contines the algorithm. Memory usage can be very high in high dimensions.
userandom
If input
is a hypervolume and userandom
is TRUE
, the output hypervolume will enclose the uniformly random points defining the hypervolume; otherwise, it will enclose the data points used to build the hypervolume. If
method
If "rejection"
, constructs output hypervolume using hyperbox rejection sampling (recommended) from the convex polytope. If "metropolis"
, uses Metropolis-Hastings algorithm, discarding the first burnin
samples with a
burnin
Number of MCMC samples to discard if method="metropolis"
. Defaults to 10^n (value not guaranteed to produce uniformly random results). Otherwise ignored.
delta
Jump size for MCMC sampling if method="metropolis"
. Defaults to one percent of the maximum range of the data along any axis. Otherwise ignored.