# NOT RUN {
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values
p1 <- 0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Total sample size (stages 1&2)
N <- 25
# Efficacy (equal) variance per dose
v <- rep(0.01, 6)
# Dose-efficacy curve
m = c(10, 20, 30, 40, 70, 90)
# Number of toxicity types
ntox = 3
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 1
0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
nrow = ntox, byrow = TRUE)
# Standard deviation of nTTP values
std.nTTP = 0.15
# Array of toxicity event probabilities
TOX = array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001,
0.791, 0.172, 0.032, 0.004, 0.001,
0.758, 0.180, 0.043, 0.010, 0.009,
0.685, 0.190, 0.068, 0.044, 0.013,
0.662, 0.200, 0.078, 0.046, 0.014,
0.605, 0.223, 0.082, 0.070, 0.020),
nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000,
0.968, 0.029, 0.002, 0.001, 0.000,
0.813, 0.172, 0.006, 0.009, 0.000,
0.762, 0.183, 0.041, 0.010, 0.004,
0.671, 0.205, 0.108, 0.011, 0.005,
0.397, 0.258, 0.277, 0.060, 0.008),
nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004,
0.917, 0.070, 0.007, 0.001, 0.005,
0.652, 0.280, 0.010, 0.021, 0.037,
0.536, 0.209, 0.031, 0.090, 0.134,
0.015, 0.134, 0.240, 0.335, 0.276,
0.005, 0.052, 0.224, 0.372, 0.347),
nrow = 6, byrow = TRUE)
sim.trials.nTTP(numsims = 10, dose = dose, p1 = p1, p2 = p2, K = K,
coh.size = coh.size, m = m, v = v, N = N, stop.rule = 9, cohort = 1,
samedose = TRUE, nbb = 100, W = W, TOX = TOX, ntox = ntox, std.nTTP = std.nTTP)
# }
Run the code above in your browser using DataLab