# NOT RUN {
library("DALEX")
library("iBreakDown")
# Toy examples, because CRAN angels ask for them
titanic <- na.omit(titanic)
set.seed(1313)
titanic_small <- titanic[sample(1:nrow(titanic), 500), c(1,2,6,9)]
model_titanic_glm <- glm(survived == "yes" ~ gender + age + fare,
data = titanic_small, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_small[,-9],
y = titanic_small$survived == "yes")
bd_rf <- local_attributions(explain_titanic_glm, titanic_small[1, ])
bd_rf
plotD3(bd_rf)
# }
# NOT RUN {
library("randomForest")
titanic <- na.omit(titanic)
model_titanic_rf <- randomForest(survived == "yes" ~ gender + age + class + embarked +
fare + sibsp + parch, data = titanic)
explain_titanic_rf <- explain(model_titanic_rf,
data = titanic[,-9],
y = titanic$survived == "yes",
label = "Random Forest v7")
new_passanger <- data.frame(
class = factor("1st", levels = c("1st", "2nd", "3rd", "deck crew", "engineering crew",
"restaurant staff", "victualling crew")),
gender = factor("male", levels = c("female", "male")),
age = 8,
sibsp = 0,
parch = 0,
fare = 72,
embarked = factor("Southampton",
levels = c("Belfast", "Cherbourg", "Queenstown", "Southampton")))
rf_la <- local_attributions(explain_titanic_rf, new_passanger)
rf_la
plotD3(rf_la)
plotD3(rf_la, max_features = 3)
plotD3(rf_la, max_features = 3, min_max = c(0,1))
# }
Run the code above in your browser using DataLab