Learn R Programming

iC10 (version 2.0.2)

iC10-package: tools:::Rd_package_title("iC10")

Description

tools:::Rd_package_description("iC10")

Arguments

Author

tools:::Rd_package_author("iC10")

Maintainer: tools:::Rd_package_maintainer("iC10")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("iC10") tools:::Rd_package_indices("iC10") iC10 implements the classifier described in the paper 'Genome-driven integrated classification of breast cancer validated in over 7,500 samples' (Ali HR et al., Genome Biology 2014). It uses copy number and/or expression form breast cancer data, trains a pamr classifier (Tibshirani et al.) with the features available and predicts the iC10 group.

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352. Tibshirani et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99(10):6567-6572.

Examples

Run this code
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
summary(res)
goodnessOfFit(res, newdata=features)
compare(res, iC10=1:2, newdata=features)
compare(res, iC10=2:4, newdata=features)

Run the code above in your browser using DataLab