This function takes an object of class iCellR and runs diffusion map on PCA data.
run.diffusion.map(
x = NULL,
dims = 1:10,
method = "destiny",
ndim = 3,
k = 5,
alpha = 40,
n.landmark = 2000,
gamma = 1,
t = "auto",
knn.dist.method = "euclidean",
init = NULL,
mds.method = "metric",
mds.dist.method = "euclidean",
t.max = 100,
npca = 100,
plot.optimal.t = FALSE,
verbose = 1,
n.jobs = 1,
seed = NULL,
potential.method = NULL,
use.alpha = NULL,
n.svd = NULL,
pca.method = NULL,
g.kernel = NULL,
diff.op = NULL,
landmark.transitions = NULL,
diff.op.t = NULL,
dist.method = NULL
)
An object of class iCellR.
An object of class iCellR.
PC dimentions to be used for UMAP analysis.
diffusion map method, default = "phate".
int, optional, default: 2 number of dimensions in which the data will be embedded
int, optional, default: 5 number of nearest neighbors on which to build kernel
int, optional, default: 40 sets decay rate of kernel tails. If NULL, alpha decaying kernel is not used
int, optional, default: 2000 number of landmarks to use in fast PHATE
float, optional, default: 1 Informational distance constant between -1 and 1. gamma=1 gives the PHATE log potential, gamma=0 gives a square root potential.
int, optional, default: 'auto' power to which the diffusion operator is powered sets the level of diffusion
string, optional, default: 'euclidean'. recommended values: 'euclidean', 'cosine', 'precomputed' Any metric from scipy.spatial.distance can be used distance metric for building kNN graph. If 'precomputed', data should be an n_samples x n_samples distance or affinity matrix. Distance matrices are assumed to have zeros down the diagonal, while affinity matrices are assumed to have non-zero values down the diagonal. This is detected automatically using data[0,0]. You can override this detection with knn.dist.method='precomputed_distance' or knn.dist.method='precomputed_affinity'.
phate object, optional object to use for initialization. Avoids recomputing intermediate steps if parameters are the same.
string, optional, default: 'metric' choose from 'classic', 'metric', and 'nonmetric' which MDS algorithm is used for dimensionality reduction
string, optional, default: 'euclidean' recommended values: 'euclidean' and 'cosine'
int, optional, default: 100. Maximum value of t to test for automatic t selection.
int, optional, default: 100 Number of principal components to use for calculating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time.
boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection.
int or boolean, optional (default : 1) If TRUE or > 0, message verbose updates.
int, optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus for n_jobs = -2, all CPUs but one are used
int or NULL, random state (default: NULL)
Deprecated. For log potential, use gamma=1. For sqrt potential, use gamma=0.
Deprecated To disable alpha decay, use alpha=NULL
Deprecated.
Deprecated.
Deprecated.
Deprecated.
Deprecated.
Deprecated.
Deprecated.