# generate simulated data set from conditional normal distribution
set.seed(1234567)
es.sim = genSimData.BayesNormal(nCpGs = 100,
nCases = 20, nControls = 20,
mu.n = -2, mu.c = 2,
d0 = 20, s02 = 0.64, s02.c = 1.5, testPara = "var",
outlierFlag = FALSE,
eps = 1.0e-3, applier = lapply)
print(es.sim)
# although the generated data is not from
# paired design, we use it to illusrate the
# usage of the function lmFitPaired
res.limma = lmFitPaired(
es = es.sim,
formula = ~as.factor(memSubj),
pos.var.interest = 0,
pvalAdjMethod = "fdr",
alpha = 0.05,
probeID.var = "probe",
gene.var = "gene",
chr.var = "chr",
verbose = TRUE)
Run the code above in your browser using DataLab