lmFitWrapper( es, formula = ~as.factor(gender), pos.var.interest = 1, pvalAdjMethod = "fdr", alpha = 0.05, probeID.var = "ProbeID", gene.var = "Symbol", chr.var = "Chromosome", verbose = TRUE)fData(es) should
contains information about chromosome number and gene symbol.
formula.
No left handside of ~ should be specified since the response variable
will be the expression level.
~
in formula is the covariate of the interest. By default, it is
the first covariate pos.var.interest=1.
p.adjust in R package stats:
holm, hochberg, hommel,
bonferroni, BH, BY, fdr,
none.
alpha.
$>verbose=TRUE,
intermediate output will be printed.
probeIDs,
geneSymbols (gene symbols of the genes where the probes come from),
chr (numbers of chromosomes where the probes locate),
stats (moderated t-statistics for the covariate of interest, i.e.
the first covariate), \
codepval (p-values of the tests for the covariate of interest, i.e.
the first covariate),
p.adj (adjusted p-values), pos (row numbers of the probes in
the expression data matrix).formula.probeIDs,
geneSymbols (gene symbols of the genes where the probes come from),
chr (numbers of chromosomes where the probes locate),
stats (moderated t-statistics for the covariate of the interest),
pval (p-values of the tests for the covariate of the interest),
p.adj (adjusted p-values),
pos (row numbers of the probes in
the expression data matrix).memGenes[i]=1 if the $i$-th probe is significant (adjusted pvalue $<$ alpha) with
positive moderated t-statistic;
memGenes[i]=2 if the $i$-th probe is nonsignificant ;
memGenes[i]=3 if the $i$-th probe is significant with
negative moderated t-statistic;
$>memGenes2[i]=1 if the $i$-th probe is significant (adjusted pvalue $<$ alpha).
memGenes2[i]=0 if the $i$-th probe is nonsignificant.
$>memGenes value equal to 1.
memGenes value equal to 2.
memGenes value equal to 3.
eBayes.
lmFit and eBayes to make it easier to input design and
output list of significant results.
# generate simulated data set from conditional normal distribution
set.seed(1234567)
es.sim = genSimData.BayesNormal(nCpGs = 100,
nCases = 20, nControls = 20,
mu.n = -2, mu.c = 2,
d0 = 20, s02 = 0.64, s02.c = 1.5, testPara = "var",
outlierFlag = FALSE,
eps = 1.0e-3, applier = lapply)
print(es.sim)
res.limma = lmFitWrapper(
es = es.sim,
formula = ~as.factor(memSubj),
pos.var.interest = 1,
pvalAdjMethod = "fdr",
alpha = 0.05,
probeID.var = "probe",
gene.var = "gene",
chr.var = "chr",
verbose = TRUE)
Run the code above in your browser using DataLab