Usage
gibbs_sampling(matrixY1, matrixY2, matrixL1, matrixL2, eta0,
eta1, alpha_tau = 1, beta_tau = 0.01, tau_sig = 0, max_iter = 1e+05,
thin = 10, alpha_sigma1 = 0.7, alpha_sigma2 = 0.7,
beta_sigma1 = 0.3, beta_sigma2 = 0.3, file_name)
Arguments
matrixY1
The gene expression matrix, dim(Y1)=G1*J
matrixY2
The drug sensitivity matrix, dim(Y2)=G2*J
matrixL1
The linkage matrix representing prior knowledge
about the sparsity pattern of matrixZ1
matrixL2
The linkage matrix representing prior knowledge
about the sparsity pattern of matrixZ2
eta0
The probability of having true value of 1 for
the entries in matrixZ with value 0 in matrixL
eta1
The probability of having true value of 0 for
the entries in matrixZ with value 1 in matrixL
alpha_tau
The alpha parameter of Gamma distribution
used for the simulation of noise, default value=1
beta_tau
The beta parameter of Gamma distribution used
for the simulation of noise, default value=0.01
tau_sig
Pre-defined precision of each entry in the factor
loadings matrixW1 and matrixW2, default value=0
max_iter
The number of iterations of the collaped
Gibbs sampling algorithm, default=100000
thin
The number of iteration cycle for the record of
Gibbs samples. For the convenience of storage, the
result of the Gibbs sampling will be kept every other
"thin" iterations to alliviate the auto-correlation
problem between adjacent interations of the Gibbs
sampling process
alpha_sigma1,alpha_sigma2
If tau_sig=0, the precision
of each entry in the factor loading matrixW1 and
matrixW2 is not pre-defined, but also treated in
a bayesian way. The implemented algorithm will
then put a Gamma prior on the precision of matrixW.
alpha_sigma1 and alpha_sigma2 are the alpha parameter
for the Gamma prior for matrixW1 and
matrixW2 respectively
beta_sigma1,beta_sigma2
The alpha parameter for the Gamma prior
for matrixW1 and matrixW2 respectively
file_name
The name of the file to store the result of each thinned
iteration of the Gibbs sampling