library(Rlab)
library(MASS)
library(coda)
library(ROCR)
#Simulate datasets
data_simulation(K=10,G1=30,G2=30,J=15,eta0=c(0.2,0.2),
eta1=c(0.2,0.2),density=c(0.1,0.1),alpha_tau=1,
beta_tau=0.01,SNR=0,file_name="demo_data.RData")
#Gibbs sampling
data(matrixY1)
data(matrixY2)
data(matrixL1)
data(matrixL2)
gibbs_sampling(matrixY1, matrixY2, matrixL1, matrixL2,
eta0=c(0.2,0.2), eta1=c(0.2,0.2), alpha_tau = 1,
beta_tau = 0.01, tau_sig = 1, max_iter = 5,
thin = 1, file_name="Demo_Gibbs_result.RData")
#Traceplot
data(tau_g_chain)
mcmc_trace_plot(tau_g_chain,plot_file_name="Demo_traceplot.pdf",
index=1:10)
#ROC plot
data(matrixZ1)
data(matrixZ2)
data(matrixZ_chain)
ROC_plot(matrixZ1, matrixZ2, matrixZ_chain, plot_name="ROC_plot.pdf",
result_file_name="ROC_result.RData", burn=1)
#RMSE plot
data(Y1_mean)
data(Y2_mean)
data(matrixY1)
data(matrixY2)
data(matrixZ_chain)
data(matrixW1)
data(matrixW2)
data(matrixW_chain)
data(matrixX)
data(matrixX_chain)
Ymean_compare(Y1_mean,Y2_mean,matrixY1, matrixY2, matrixZ_chain,
matrixW1, matrixW2, matrixW_chain, matrixX, matrixX_chain,
result_file_name="RMSE_demo.RData", plot_name="RMSE_plot.pdf")
Run the code above in your browser using DataLab