# match G_1 & G_2 using Umeyama algorithm
G <- sample_correlated_gnp_pair(10, .9, .5)
g1 <- G$graph1
g2 <- G$graph2
startm <- matrix(0, 10, 10)
diag(startm)[1:4] <- 1
GM_Umeyama <- gm(g1, g2, similarity = startm, method = "Umeyama")
GM_Umeyama
# generate the corresponding permutation matrix
GM_Umeyama[]
summary(GM_Umeyama, g1, g2)
# visualize the edge-wise matching performance
plot(g1, g2, GM_Umeyama)
plot(g1[], g2[], GM_Umeyama)
Run the code above in your browser using DataLab