# Load molecular profiles for three data types and calculate scaling for each
example.molecular.data.dir <- paste0(path.package('iSubGen'),'/exdata/');
molecular.data <- list();
scaling.factors <- list();
for (i in c('cna','snv','methy')) {
# Load molecular profiles from example files saved
# in the package as _profiles.txt
molecular.data[[i]] <- load.molecular.aberration.data(
paste0(example.molecular.data.dir,i,'_profiles.txt'),
patients = c(paste0('EP00',1:9), paste0('EP0',10:30))
);
scaling.factors[[i]] <- list();
scaling.factors[[i]]$center <- apply(molecular.data[[i]], 1, mean);
scaling.factors[[i]]$scale <- apply(molecular.data[[i]], 1, sd);
}
# Example 1: Transform the molecular profiles by the scaling factors
scaled.molecular.data <- apply.scaling(molecular.data, scaling.factors);
# Example 2: Transform one of the data types based on the scaling factors
scaled.molecular.data2 <- apply.scaling(
molecular.data[[1]],
scaling.factors[[1]]
);
Run the code above in your browser using DataLab