powered by
The input data is assumed to be a list containing multiple matrices, which share common column.
GroupICA( Xs, J1, J2 = J1, algorithm = c("pooled", "Calhoun2009", "Pfister2018"), ica.algorithm = c("FastICA", "InfoMax", "ExtInfoMax", "JADE", "AuxICA1", "AuxICA2", "IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI", "ProDenICA", "RICA"), num.iter = 30, thr = 1e-10, verbose = FALSE )
A list containing the result of the decomposition
A list containing multiple matrices
Rank parameter to decompose
Rank parameter used in Calhoun2009
Pool algorithm to merge multiple ICA results (Default: pooled)
The decomposition algorithm (Default: "FastICA")
The number of iterations
The threshold to terminate the iteration (Default: 1E-10)
Verbose option
X1 <- matrix(runif(100*200), nrow=100, ncol=200) X2 <- matrix(runif(150*200), nrow=150, ncol=200) Xs <- list(X1=X1, X2=X2) out <- GroupICA(Xs, J1=5)
Run the code above in your browser using DataLab