The input data is assumed to be a matrix. ICA decomposes the matrix and extract the components that are statistically independent each other.
ICA2(
X,
J,
algorithm = c("JADE", "AuxICA1", "AuxICA2", "IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI",
"ProDenICA", "RICA"),
num.iter = NULL,
thr = 1e-10,
r_list = NULL,
omega_for_each_r = NULL,
a_r_for_each_r = NULL,
tau_list = NULL,
num_bins = NULL,
alpha = NULL,
num_epoch = NULL,
verbose = FALSE
)
A list containing the result of the decomposition
A matrix
Rank parameter to decompose
The decomposition algorithm (Default: "JADE")
The number of iteration
The threshold to terminate the iteration (Default: 1E-10)
List of r-th order cumulants used in SIMBEC (Default: NULL)
Weight vector of r_list used in SIMBEC (Default: NULL)
Parameter vector to specify the shape of partial activation function in SIMBEC (Default: NULL)
List of lags to consider the auto-correlation used in AMUSE and SOBI (Default: NULL)
Number of bins for histgram in ProDenICA (Default: NULL)
Learning rate used for gradient descent in RICA (Default: NULL)
Number of epoch used for gradient descent in RICA (Default: NULL)
Verbose option