The input datasets are assumed to be two matrices sharing the column space.
MICA decomposes the matrices simutanously
and extracts the components that maximizes the mutual information
between the components.
Usage
MICA(
X,
Y,
J,
eta = 1000 * 1e-04,
verbose = FALSE,
mu = 50 * 1e-04,
gamma_ts = 1
)
Value
A list containing the result of the decomposition
Arguments
X
A matrix sharing the column space with Y (??? x N)
Y
A matrix sharing the column space with X (??? x N)
J
The rank parameter to decompose the matrices
eta
A learning rate parameter of stochastic gradient descent
verbose
Verbose option
mu
A learning rate parameter of stochastic gradient descent