# NOT RUN {
data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)
#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))
X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted
#outcome regression model, misspecified
y.fam <- gaussian(link=identity)
eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))
eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")
eta0.glm <- glm(y ~ x, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))
eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")
#ppi.hat treated as known
out.lik <- ate.lik(y, tr, ppi.hat,
g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
out.lik$diff
out.lik$v.diff
#ppi.hat treated as estimated
out.lik <- ate.lik(y, tr, ppi.hat,
g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat), X)
out.lik$diff
out.lik$v.diff
# }
Run the code above in your browser using DataLab