# NOT RUN {
data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)
#missing data
y[tr==0] <- 0
#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))
X <- model.matrix(ppi.glm)
ppi.hat <- ppi.glm$fitted
#ppi.hat treated as known
out.HT <- mn.HT(y, tr, ppi.hat)
out.HT$mu
out.HT$v
#ppi.hat treated as estimated
out.HT <- mn.HT(y, tr, ppi.hat, X)
out.HT$mu
out.HT$v
#balance checking
out.HT <- mn.HT(x, tr, ppi.hat, X, bal=TRUE)
out.HT$mu
out.HT$v
out.HT$mu/ sqrt(out.HT$v) #t-statistic
# }
Run the code above in your browser using DataLab