Learn R Programming

ibr (version 1.3.1)

BIC: Information Criterion for ibr

Description

Functions calculating the Bayesian Informative Criterion , the Generalized Cross Validation criterion and the Corrected Akaike information criterion.

Usage

## S3 method for class 'ibr':
BIC(object, \dots)

## S3 method for class 'ibr': GCV(object, \dots)

## S3 method for class 'ibr': AICc(object, \dots)

Arguments

Value

Returns a numeric value with the corresponding BIC, GCV or AICc.

Details

The ibr method for BIC, BIC.ibr() calculates $\log(sigma^2)+log(n)*df/n$, where df is the trace of the smoother.

The ibr method for GCV, GCV.ibr() calculates $\log(sigma^2)-2*\log(1-df/n)$ The ibr method for AICc, AICc.ibr() calculates $\log(sigma^2)+1+(2*(df+1))/(n-df-2)$.

References

Hurvich, C. M., Simonoff J. S. and Tsai, C. L. (1998) Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion. Journal of the Royal Statistical Society, Series B, 60, 271-293 .

See Also

ibr, summary.ibr

Examples

Run this code
data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1],ozone[,1])
BIC(res.ibr)
GCV(res.ibr)
AICc(res.ibr)

Run the code above in your browser using DataLab