Learn R Programming

ibr (version 2.0-2)

predict.ibr: Predicted values using iterative bias reduction smoothers

Description

Predicted values from iterative bias reduction object. Missing values are not allowed.

Usage

"predict"(object, newdata, interval= c("none", "confidence", "prediction"), ...)

Arguments

object
Object of class ibr.
newdata
An optional matrix in which to look for variables with which to predict. If omitted, the fitted values are used.
interval
Type of interval calculation. Only none is currently avalaible.
...
Further arguments passed to or from other methods.

Value

Produces a vector of predictions.

References

Cornillon, P.-A.; Hengartner, N.; Jegou, N. and Matzner-Lober, E. (2012) Iterative bias reduction: a comparative study. Statistics and Computing, 23, 777-791.

Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2013) Recursive bias estimation for multivariate regression smoothers Recursive bias estimation for multivariate regression smoothers. ESAIM: Probability and Statistics, 18, 483-502.

See Also

ibr, summary.ibr

Examples

Run this code
## Not run: data(ozone, package = "ibr")
# res.ibr <- ibr(ozone[,-1],ozone[,1],df=1.2,K=1:500)
# summary(res.ibr)
# predict(res.ibr)## End(Not run)

Run the code above in your browser using DataLab