The function DuchonQ
computes the semi-kernel of Duchon splines. This function is not intended to be used directly.
DuchonQ(x,xk,m=2,s=0,symmetric=TRUE)
The semi-kernel evaluated.
A numeric matrix of explanatory variables, with n rows and p columns.
A numeric matrix of explanatory variables, with nk rows and p columns.
Order of derivatives.
Exponent for the weight function.
Boolean: if TRUE
only x
is used and it
computes the semi-kernel at observations of x
(it should give the
same result as DuchonQ(x,xk,m,s,FALSE)
).
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober.
Duchon, J. (1977) Splines minimizing rotation-invariant semi-norms in Solobev spaces. in W. Shemp and K. Zeller (eds) Construction theory of functions of several variables, 85-100, Springer, Berlin.
ibr