The function evaluates the fit for iterative bias reduction
model for iteration k
. This function is not intended to be used directly.
fittedS1(n,U,tUy,eigenvaluesS1,ddlmini,k)
Returns a vector containing the fit
The number of observations.
The the matrix of eigen vectors of the symmetric smoothing matrix S.
The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.
Vector of the eigenvalues of the symmetric smoothing matrix S.
The number of eigen values of S equal to 1.
A numeric vector which gives the number of iterations
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober
see the reference for detailed explanation of computation of iterative bias reduction smoother
Cornillon, P.-A.; Hengartner, N.; Jegou, N. and Matzner-Lober, E. (2012) Iterative bias reduction: a comparative study. Statistics and Computing, 23, 777-791.
Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2013) Recursive bias estimation for multivariate regression smoothers Recursive bias estimation for multivariate regression smoothers. ESAIM: Probability and Statistics, 18, 483-502.
Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2017) Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package. Journal of Statistical Software, 77, 1--26.
ibr