Learn R Programming

ibr (version 2.0-4)

ibr-package: Iterative Bias Reduction

Description

an R package for multivariate smoothing using Iterative Bias Reduction smoother.

Arguments

Author

Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober

Maintainer: Pierre-Andre Cornillon <pierre-andre.cornillon@supagro.inra.fr>

Details

  • The most important parameter of the iterated bias reduction is \(k\) the number of iterationsr. Usually this parameter is unknown and is chosen from the search grid K to minimize the criterion (GCV, AIC, AICc, BIC or gMDL).
    The user must choose the pilot smoother (kernel "k", thin plate splines "tps" or Duchon splines "ds") plus the values of bandwidths (kernel) or \(\lambda\) thin plate splines). As the choice of these raw values depend on each particular dataset, one can rely on effective degrees of freedom or default values given as degree of freedom, see argument df of the main function ibr.

Index of functions to be used by end user:


ibr:               Iterative bias reduction smoothing
plot.ibr:          Plot diagnostic for an ibr object
predict.ibr:       Predicted values using iterative bias reduction
                   smoothers
forward:           Variable selection for ibr (forward method)
print.summary.ibr: Printing iterative bias reduction summaries
summary.ibr:       Summarizing iterative bias reduction fits

Examples

Run this code
if (FALSE) {
data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1],ozone[,1],smoother="k",df=1.1)
summary(res.ibr)
predict(res.ibr)
plot(res.ibr)
}

Run the code above in your browser using DataLab