Independent Component Analysis (ICA) using various algorithms: FastICA, Information-Maximization (Infomax), and Joint Approximate Diagonalization of Eigenmatrices (JADE).
The functions icafast
, icaimax
, and icajade
calculate ICA demcompositions using the FastICA, Infomax, and JADE algorithms (respectively). The function icasamp
can be used to sample from various interesting distirubtions, which are useful for comparing ICA algorithms.
Amari, S., Cichocki, A., & Yang, H.H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press.
Bach, F.R. (2002). kernel-ica. MATLAB toolbox (ver 1.2) http://www.di.ens.fr/~fbach/kernel-ica/.
Bach, F.R. & Jordan, M.I. (2002). Kernel independent component analysis. Journal of Machine Learning Research, 3, 1-48.
Bell, A.J. & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
Cardoso, J.F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings-F, 140, 362-370.
Cardoso, J.F., & Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications, 17, 161-164.
Helwig, N.E. & Hong, S. (2013). A critique of Tensor Probabilistic Independent Component Analysis: Implications and recommendations for multi-subject fMRI data analysis. Journal of Neuroscience Methods, 213, 263-273.
Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626-634.
Tucker, L.R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington, DC: Department of the Army.
# NOT RUN {
# See examples for icafast, icaimax, icajade, and icasamp
# }
Run the code above in your browser using DataLab