Learn R Programming

ica (version 1.0-2)

ica-package: tools:::Rd_package_title("ica")

Description

tools:::Rd_package_description("ica")

Arguments

Author

tools:::Rd_package_author("ica")

Maintainer: tools:::Rd_package_maintainer("ica")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("ica") tools:::Rd_package_indices("ica")

References

Amari, S., Cichocki, A., & Yang, H.H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press.

Bach, F.R. (2002). kernel-ica. MATLAB toolbox (ver 1.2) http://www.di.ens.fr/~fbach/kernel-ica/.

Bach, F.R. & Jordan, M.I. (2002). Kernel independent component analysis. Journal of Machine Learning Research, 3, 1-48.

Bell, A.J. & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.

Cardoso, J.F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings-F, 140, 362-370.

Cardoso, J.F., & Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications, 17, 161-164.

Helwig, N.E. & Hong, S. (2013). A critique of Tensor Probabilistic Independent Component Analysis: Implications and recommendations for multi-subject fMRI data analysis. Journal of Neuroscience Methods, 213, 263-273.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626-634.

Tucker, L.R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington, DC: Department of the Army.

Examples

Run this code
# See examples for icafast, icaimax, icajade, and icasamp

Run the code above in your browser using DataLab