## Not run:
# data(Hofmann)
# require(lme4)
#
# #Random-Intercepts Model
# lmmHofmann0 = lmer(helping ~ (1|id),data=Hofmann)
# vy_Hofmann = var(Hofmann[,'helping'])
# #computing icca
# VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann
#
# #Estimating Group-Mean Centered Random Slopes Model, no level 2 variables
# lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent |id),data=Hofmann,REML=F)
# X_Hofmann = model.matrix(lmmHofmann1)
# P = ncol(X_Hofmann)
# T1_Hofmann = VarCorr(lmmHofmann1)$id[1:P,1:P]
# #computing iccb
# icc_beta(X_Hofmann,Hofmann[,'id'],T1_Hofmann,vy_Hofmann)$rho_beta
#
# #Performing LR test
# #Need to install 'RLRsim' package
# library('RLRsim')
# lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 |id),data=Hofmann,REML=F)
# obs.LRT <- 2*(logLik(lmmHofmann1)-logLik(lmmHofmann1a))[1]
# X <- getME(lmmHofmann1,"X")
# Z <- t(as.matrix(getME(lmmHofmann1,"Zt")))
# sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
# (pval <- mean(sim.LRT > obs.LRT))
# ## End(Not run)
Run the code above in your browser using DataLab